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Abstract. A more detailed consideration of a trial wavefunction antisymmetry makes it 
possible to raise an energy lower bound of a many-fermion system. The method is 
particularly effective for a small number of particles. 

1. Introduction 

A translation invariant system of N identical fermions with binary interaction U (ri - ri) 
is considered. An improvement is proposed to the method by Carr and Post (1968, 
1977) of calculating a lower bound 8 for the ground-state energy Eo. In the quoted 
paper Eo was defined as a minimum of the functional (+\HI+), where 

is the model operator with eigenfunctions 4, and eigenvalues E ,  

m is the mass of a particle, p i  = ri - rl, and +(p2, p3, . . . , p ~ )  is the trial function which 
must be antisymmetric in particles 1 ,2 , .  . . , N. 

Carr and Post (1968, 1977) symmetrise $ in particles 2 ,3 , .  . . , N only, thus 
enlarging the class of trial functions, and obtain in this way the lower bound for Eo. 

2. Improvement on the Carr and Post method 

Any antisymmetric function is equal to zero when the coordinates of two particles 
coincide. Hence, the function +(pz ,  p3, . . . , p ~ )  should vanish when any of the relative 
coordinates p i  = ri - rl is zero and the spin coordinates of particles i and 1 are the same. 
We use this property to improve the lower estimate for Eo: antisymmetrising + in 
particles 2, 3, . . . , N only, we also require it to vanish at pi  = 0. 

For simplicity we consider the case of spinless fermions. Now, the variational 
problem is 

8 = min(+lHl+), 

~ ( P z ,  * * * 9 pi-1, pi = 0,  pi+l,  

(*I+) = 1, 

* * y P N )  = 0. 
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4 0 1 2 ( x 2  =o ,  x 3 ,  x4).= 

Expanding 4 over eigenfunctions of H, 

43 

4 = C c a n 4 a n b 2 ,  - . . ,  P N ) ,  
n = l  

we arrive at the system of equations for coefficients c, 

cPo(0) ( P l ( 0 )  (P2(0) 

(PO(X3) ( P l ( x 3 )  (PZ(x3) 

(PO(X4) (P l (X4)  (P2(x4) 

Recall that odd Hermite polynomials become zero at x = 0. The next term in (2) is 

and so on. The sum in (2) consists of all possible determinants of second rank. As these 
are all linearly independent and the equality (2) holds for any x 3 ,  x4, the coefficients at 
each determinant should be equal to zero. Thus, the condition (2) yields an infinite 
system of linear homogeneous equations for c, which splits into independent subsys- 
tems. Here are the first few subsystems (vi means q ( 0 ) ) :  

C 0 1 2 ( P 2 f C 0 1 4 ( P 4 f C 0 1 6 ( P 6 f . .  . I f 0 1  = o  
C 0 1 2 ( P O f C 4 1 2 ( P 4 f C 6 1 2 ( P 6 f . .  .'f21 = o  
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‘ 

Now, the subsidiary conditions (1) and (3) are taken into account by introducing 
Lagrange multipliers into the variation of 8: 

CO 
2 

$ - A  1 ICm,,! -POlfOl-h21fZl - . .  *-/J-13f13-P03fO3-* .) =o. 

That gives 

I 2 2 2 
Po1472 + P Z i ~ O ~ z + P o 1 ~ 4  +P41470474+P01476 +P61QoQ6+.  . . = o  

€012-A €014-A €016 - A 

~ 0 1 ( P 2 ( P O f ~ 2 1 4 7 0 + ~ 2 1 ( P 4  2 2 +P41472474+C*.21(P6 2 +P61472476+. . . = o  
€012-A €412-A €612-h 

< . . . . .  

Po1472 +P21470 
CO12 = 

2 ( ~ 0 1 2 - A )  ’ 

. . . .  

. . . .  

A nontrivial solution exists if the determinant of the system is zero. This yields an 
equation for A. Since the system (4) as well as (3) consists of independent subsystems, its 
determinant has a block-diagonal form and is equal to the product of determinants of 
individual subsystems. Hence, a solution can be found by equating to zero each of those 
determinants independently. For instance we obtain from the first subsystem 

2 
47: 476 +. . .) (A- +-+- 

€012-A €014-A ~ o i 6 - A  

470472 

€012-A 

. . .  472470 

€210-A 

from the second 

+. . . =o, 47: 
2 

472 +-+- 
EOl3-A €213-A €413-A 

47: 

and so on. Most of the determinants turn out to be of infinite rank. Their matrix 
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elements decrease quite rapidly with increasing number of the row and column. 
Therefore, A can be obtained within the desired accuracy by cutting off the deter- 
minants. 

The lower bound of energy we are looking for equals the minimal value of A .  It is not 
known a priori whether either equations ( 5 )  or (6) or some other, have as a solution the 
minimal A = Ao. We know, however, that solutions to equation (5) are above e012, to 
equation (6) above €013, and for subsequent equations above €023, etc. Therefore, if A. 
found from ( 5 )  is smaller than €013, the problem is solved. If it is larger than €013, it 
should be compared with the solution to equation (6). If both the solutions are larger 
than €023, a subsequent equation is to be solved, and so on. Obviously, this procedure is 
not infinite as we should not go above the exact energy value. 

It can be seen that the method proposed for solving the variational problem is 
extended, without change, to systems with N > 4. 

For N s 10 we have calculated the ratios of the lower bound 8 to the exact value Eo. 
These are listed in table 1 where the ratios which can be obtained from Carr and Post 
(1968, 1977) are also given for comparison; 

Table 1 also contains the results by Post (1956) and the ratios 

J3 N-1 
%/Eo=-- 

2 N + l  

from Hall (1967) obtained by another method. The comparison shows that our version 
of the Carr and Post method provides better results for N S 9 while for N 3 10 the 
method of Hall works better. 

The above concerns the one-dimensional harmonic oscillator. The generalisation to 
the three-dimensional system of particles with spin interacting through arbitrary forces 
is straightforward. The only note should be made that all equations, (3, (6), etc. include 
the wavefunctions which are not equal to zero at zero point. The same will be true in the 
general case, i.e. equations will contain only the s-state wavefunctions. 

Table 1. Ratios of lower bounds to exact energies for the one-dimensional system of N 
spinless fermions with the oscillator interaction. 

N 2 3 4 5 6 7 8 9 10 

This paper 1 0.70 0.71 0.69 0.71 0.70 0.71 0.70 0.70 

'Ea Hall 0.29 0.43 0.52 0.58 0.62 0.65 0.67 0.69 0.71 
Post 1 0.75 0.60 0.50 0.43 0.37 0.33 0.30 0.27 

8 Carrand Post 0.33 0.43 0.49 0.53 0.55 0.57 0.59 0.60 0.61 
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